UBER DIE REAKTIVITÄT VON 4-PHENYL-1,2,4-TRIAZOLIN-3,5-DION MIT DIAZOVERBINDUNGEN¹

Willi Bethäuser, Manfred Regitz* und Wolfgang Theis

Fachbereich Chemie der Universität Kaiserslautern, Paul-Ehrlich-Strasse, D-6750 Kaiserslautern, Germany

Die Reaktivität aliphatischer Diazoverbindungen gegenüber offenkettigen, akzeptorsubstituierten Azoverbindungen war Gegenstand zahlreicher Untersuchungen, in denen u.a. über die Bildung von Diaziridinen, 1,3,4-0xadiazolinen, Diacylhydrazonen und Azomethinen berichtet wurde 2 . Nur sehr spärlich ist dagegen unser Wissen über das Verhalten zwischen 4-Phenyl-1,2, 4-triazolin-3,5-dion ($\frac{2}{2}$)- einer diacylierten Azoverbindung mit zwangsläufiger cis-Anordnung der Substituenten- und Diazoalkanen.

Setzt man die arylsubstituierten Diazoverbindungen $\underline{1}\underline{a}-\underline{e}$ in Benzol mit dem Triazolindion $\underline{2}$ bei 20°C um, so lassen sich in 65 - 85 proz. Ausbeute die Dipole $\underline{4}\underline{a}-\underline{e}$ isolieren. Ladungsdelokalisierung im anionischen sowie im kationischen Molekülteil, an der auch die Arylgruppen beteiligt sein sollten, trägt zweifellos zur Stabilisierung der Dipole bei. Da die Diazoverbindungen $\underline{1}\underline{a}-\underline{e}$ unter den Bedingungen der Triazolindion-Reaktion stabil sind, muß man annehmen, daß $\underline{2}$ unmittelbar an der N₂-Abspaltung beteiligt ist; dies legt eine Diazoniumzwischenstufe gemäß $\underline{3}$ nahe.

1,3,4	<u>a</u>	₫	<u>c</u>	di	ē
R ¹	Ph				Ø
R ²	CO-Ph			Ø	Ø
ZersP.	170 °C	149 °C	170 °C	191 °C	176 °C

Die Dipole stellen gelbe ($\frac{4a}{2}$), orange ($\frac{4c}{2}$ - $\frac{e}{2}$) und violette Verbindungen ($\frac{4b}{2}$) dar, die sich erst bei hohen Temperaturen zersetzen. Entsprechende Reaktionen sind bisher erst von Diazodiphenylmethan 3 und 9-Diazofluoren 4 bekannt.

Osmoetrische $(CH_2Cl_2, 4b-e)$ sowie eine massenspektrometrische Molmassenbestimmung $(4b)^5$ zeigen den monomeren Charakter der Dipole an; für 4b-d und e wurden Dipolmomente von 5.3, 6.3 und 5.0 D gemessen (Dioxan, Verfahren von Hedestrand). Im besten Einklang mit den Dipolstrukturen stehen auch die für 4a und a aufgenommenen a C-Spektren (CDCl₃, TMS als innerer Standard): Der Benzylkohlenstoff – neben dem benachbarten Stickstoff Träger der positiven Ladung – erscheint bei a = 188 bzw. 157.5 ppm.

Aus chemischer Sicht gibt sich der Dipolcharakter von $\frac{4b}{2}$ und $\frac{1}{2}$ urch die Cycloaddition mit Acetylendicarbonsäure-dimethylester zu erkennen; sie liefert die Spiropyrazoline $\frac{6b}{2}$ und $\frac{1}{2}$ (52 bzw. 65 %; Schmp.: 181 bzw. 263°C). Ferner wird Ethanol von $\frac{4b}{2}$ - $\frac{1}{2}$ glatt im erwarteten Sinne unter der Bildung der Urazole $\frac{5b}{2}$ - $\frac{1}{2}$ addiert. Gerade diese Reaktion ist vorzüglich geeignet, hochreaktive und somit nicht isolierbare Dipole aus Triazolindionreaktionen von Diazoverbindungen abzufangen. So entstehen aus $\frac{1}{2}$ - $\frac{1}{2}$ bei der Umsetzung mit $\frac{1}{2}$ in Ethanol bei $\frac{1}{2}$ 0°C die Urazole $\frac{5f}{2}$ - $\frac{1}{2}$; dies belegt auch in diesen Fällen die primäre Bildung wenn auch nur kurzlebiger Dipole ($\frac{4f}{2}$ - $\frac{1}{2}$).

°C

161

146

159 °C

Schmp.

210

^{*) 5}b: 240°C; 5c: 208°C (Zers.); 5d: 214°C (Zers.).

In den 1 H-NMR-Spektren (CDCl $_3$) von $\underline{5}\underline{b}$ - \underline{d} und \underline{f} - \underline{k} erscheinen die OCH $_2$ -Gruppen im Bereich von δ = 3.10-3.90 ppm teils als Quartetts ($\underline{5}\underline{b}$ - \underline{d} , \underline{h} und \underline{i}) teils aber auch als AB-Teilsysteme von ABX $_3$ -Spektren ($\underline{5}\underline{f}$, \underline{g} , \underline{i} und \underline{k}) aufgrund des chiralen ursprünglichen Diazokohlenstoffs.

Diazoverbindungen mit Butadieneinheiten besitzen gegenüber dem Triazolindion $\underline{2}$ - abgesehen von der zuvor abgehandelten Reaktivität am Diazokohlenstoff - noch die Möglichkeit der [4+2]-Cycloaddition mit dem Diensystem⁶. Ganz in diesem Sinne erhält man aus den Diazomethylcycloheptatrienen $\underline{8a} = \underline{d}^{7}$, die vermutlich mit den valenztautomeren Diazomethylnorcaradienen $\underline{7a} = \underline{d}$ im Gleichgewicht stehen, von den letzteren abgeleitete Diels-Alder-Addukte ($\underline{9a} = \underline{d}$, Essigester, -20° C, 70-90%). Die noch intakte Diazogruppe läßt sich unschwer IRspektroskopisch erkennen (KBr, C=N2: 2075 - 2082 cm⁻¹). Aus den 1 H-NMR-Spektren (CDCl $_{3}$) lassen sich weitere Argumente für die Struktur von $\underline{9a} = \underline{d}$ entnehmen (s. Tab. 1). Die Tieffeldlage von H-1 (δ =1.30-1.45 ppm) ist am ehesten mit dessen endo-Anordnung vereinbar; daß der gleiche Wasserstoff mit nur 2.7 bis 3.0 Hz mit H-2 koppelt, beruht auf der trans-Stellung der beiden Kerne.

Tabelle 1 ¹H-NMR-Daten der Polycyclen 9a-d (CDCl₃, δ in ppm)

	H-1	H-2	H-3	H-4
9a	1.38(q), ³ J _{H-1/H-2} = ³ J _{H-1/P} = 2.7 Hz	1.90(q), ³ J _{H-2/H-1} = ³ J _{H-2/H-3} = 2.7 Hz	5.10 (m)	6.04 (t) 3 _J H-4/H-3 = 3.6 Hz
9 <u>b</u>	1.38(q), ${}^{3}J_{H-1/H-2} =$ ${}^{3}J_{H-1/P} = 3.0 \text{ Hz}$	1.87(q), ${}^{3}J_{H-2/H-1}^{}=$ ${}^{3}J_{H-2/H-3}^{}=3.0 \text{ Hz}$	5.25 (m)	6.13 (t) ³ J _{H-4/H-3} = 4.2 Hz
9 <u>c</u>	1.30(q), ³ J _{H-1/H-2} = ³ J _{H-1/P} = 2.7 Hz	1.70(q), ³ J _{H-2/H-1} = ³ J _{H-2/H-3} = 2.7 Hz	5.18 (m)	6.10 (t) 3J _{H-4/H-3} = 3.6 Hz
9₫	1.45(t), ³ J _{H-1/H-2} = 3.0 Hz	1.80(q), ³ J _{H-2/H-1} = ³ J _{H-2/H-3} = 3.0 Hz	5.16 (m)	6.16 (t) ³ J _{H-4/H-3} = 4.0 Hz

Ein zweites Mol Triazolindion $\underline{2}$ greift nun erwartungsgemäß die Diazogruppe im Sinne der Dipolbildung an, wie für $\underline{9}$ gezeigt wurde (gelbe, sehr instabile Kristalle vom Schmp. 148 0 C; Ausb. 98 %). Isomerisierung durch Umlagerung kann prinzipiell nicht ausgeschlossen werden.

Das doppelt ungesättigte Diazoketon $\underline{10}$ reagiert mit molaren Mengen an Dienophil $\underline{2}$ gleichfalls selektiv unter der Bildung von $\underline{11}$ [Essigester, -20°C, 90%, Schmp.: 150°C, IR (KBr): 1641, 1710, 1778 (CO); 2105 cm⁻¹ (C=N₂)].

Danksagung: Unser Dank gilt dem Fonds der Chemischen Industrie für finanzielle Unterstützung.

Literaturverzeichnis:

- 1. XXXIX. Mitteilung über Untersuchungen an Diazoverbindungen und Aziden; XXXVIII. Mitteilung: B. Arnold und M. Regitz, Tetrahedron Lett. 1980, 909.
- Zusammenfassung: I.K. Korobizina und L.L. Rodina, Z.Chem. 20, 172 (1980); dort weitere Literatur; s. auch E. Fahr und H. Lind, Angew. Chem. 78, 376 (1966); Angew. Chem., Int. Ed.Engl. 5, 372 (1966).
- 3. G.F. Bettinetti und L. Capretti, Gazz.Chim. Ital. 95, 33 (1965).
- 4. W. Ried und S.H. Lim, Liebigs Ann. Chem. 1973, 1141.
- Herrn Dr. U. Rapp (Finnigan MAT GmbH, Bremen) danken wir für die Aufnahme eines Massenspektrums nach der DCI-Technik. Mit der klassischen Elektronenstoßionisation konnte kein Molekülion gefunden werden.
- 6. R.C. Cookson, S.S.H. Gilani und I.D.R. Stevens, J. Chem. Soc.C 1967, 1905.
- 7. M. Regitz, A. Heydt und B. Weber, Angew. Chem. 91. 566 (1979); Angew. Chem., Int. Ed. Engl. 18, 531 (1979): Analog 8a werden auch 8b-d synthetisiert.

(Received in Germany 6 April 1981)